113 Class Problems: Sets and Functions

1. Let S and T be two sets with $f: S \to T$ a function. Under what circumstances does the following statement hold?

$$f$$
 injective $\iff f$ surjective $\iff f$ bijective .

Carefully justify your answer.	1 injective
Solution: Assume 51=171 < ~	=> $ S = I_m(+) $
Need to prove 7 surjective => 7 injective	Trivial \neq injective \Rightarrow $ Im(\neq) = T $ \Rightarrow $Im(\neq) = T$
This is the same as 4 not injective = I not surjective	7 bijective = 4 surjective
7 not injective => (Im(7) < 151 => IIm(7)	$ < T \Rightarrow T_{m}(7) \neq T$

2. let S and T be sets. If $U \subset S$ and $V \subset T$ then $U \times V \subset S \times T$. Are all subsets of $S \times T$ of this form? Carefully justify your answer.

Solution: No!
Observe that
$$(x,y) \in U \times V \iff z \in U, y \in V$$
.
Lat $S = T = R$, $W = \{(x,z) \mid z \in R\} \subset R \times R$
If $W = U \times V \implies (x,z) \in U \times V \forall z \in R \implies z \in U, z \in V \forall z \in R$
 $\Rightarrow U = V = R \implies W = R \times R$. Contradiction

3. Let $S = \{1, 2, 3, 4, 5, 6\}$ and $S_1 = \{1, 2, 3, 4\}$, $S_2 = \{3, 5, 6\}$, $S_3 = \{1, 3\}$. Define the relation (on S)

 $n \sim m \iff n, m \in S_i \text{ for some } i \in \{1, 2, 3\}.$

53 52

Does this give an equivalence relation? Carefully justify your answer.

Solution:

No! Transistivity does not hold. For example 1~3,3~5, but 1 of 5

4. Is the function

$$\begin{array}{rccc} f:\mathbb{Z} & \to & \mathbb{Z} \\ & x & \to & x^3 + 3x \end{array}$$

injective? Is it surjective? Carefully justify you answer. Solution:

Consider $\phi : \mathbb{R} \longrightarrow \mathbb{R}$ $x \longrightarrow x^3 + 3x$ $\frac{d\phi}{dx} = 3x^2 + 3 = 3(x^2 + 1) > 0 \quad \forall x \in \mathbb{R}$ =) & injecture by the mean value theorem. (\$(x) = \$(y) =) with x < y \$(c) = 0 / =) 7 injectre cubic $\phi(x) = x^3 + 3x = \phi$ surjective 7 is not surjective. For example However f(1) = 4f(z) = 14Because of is monotonic increasing, and (1,2) contains no integers $\overline{A} x \in \mathbb{Z}$ such that F(x) = S.