113 Class Problems: Sets and Functions

1. Let S and T be two sets with $f: S \rightarrow T$ a function. Under what circumstances does the following statement hold?

$$
f \text { injective } \Longleftrightarrow f \text { surjective } \Longleftrightarrow f \text { bijective }
$$

Carefully justify your answer.
Solution: Assume $|S|=|T|<\infty$
 This is the same as
f not injective \Rightarrow f not subjective
f not injeotice $\Rightarrow|\operatorname{Im}(7)|<|5| \Rightarrow|\operatorname{Im}(7)|<|T| \Rightarrow \operatorname{Im}(7) \neq T$
2. let S and T be sets. If $U \subset S$ and $V \subset T$ then $U \times V \subset S \times T$. Are all subsets of $S \times T$ of this form? Carefully justify your answer.
Solution: N_{0} !
Observe that $(x, y) \in U \times V \Leftrightarrow x \in U, y \in V$.
Let $S=T=\mathbb{R}, W=\{(x, x) \mid x \in \mathbb{R}\} \subset \mathbb{R} \times \mathbb{R}$
If $w=u \times V \Rightarrow(x, x) \in U \times V \quad \forall x \in \mathbb{R} \Rightarrow x \in U, x \in V \forall x \in \mathbb{R}$
$\Rightarrow U=V=\mathbb{R} \Rightarrow W=\mathbb{R} \times \mathbb{R}$. Contradiction
3. Let $S=\{1,2,3,4,5,6\}$ and $S_{1}=\{1,2,3,4\}, S_{2}=\{3,5,6\}, S_{3}=\{1,3\}$. Define the relation (on S)

$$
n \sim m \Longleftrightarrow n, m \in S_{i} \text { for some } i \in\{1,2,3\} .
$$

Does this give an equivalence relation? Carefully justify your answer.
Solution:

$$
S_{3} \quad S_{2}
$$

No! Transitivity doss not hold. For example $1 \sim 3,3 \sim 5$, but $1 \sim 5$
4. Is the function

$$
\begin{aligned}
f: \mathbb{Z} & \rightarrow \mathbb{Z} \\
x & \rightarrow x^{3}+3 x
\end{aligned}
$$

injective? Is it surjective? Carefully justify you answer.
Solution:

$$
\begin{aligned}
& \text { Consider } \quad \varnothing: \mathbb{R} \rightarrow \mathbb{R} \\
& x \longrightarrow x^{3}+3 x \\
& \frac{d \phi}{d x}=3 x^{2}+3=3\left(x^{2}+1\right)>0 \quad \forall x \in \mathbb{R} \quad \exists<\in[x, y]
\end{aligned}
$$

$\Rightarrow \phi$ injective by the mean value thervan. $\left(\begin{array}{l}\phi(x)=\phi(y) \Rightarrow \text { with } \\ x<y \quad\end{array} \begin{array}{l}\phi(c)=0\end{array}\right.$
$\Rightarrow f$ injectre cubic

$$
\phi(x)=x^{3}+3 x \Rightarrow \phi \text { sumpective }
$$

However 7 is not surjective. For example

$$
\begin{aligned}
& f(1)=4 \\
& f(z)=14
\end{aligned}
$$

Because ϕ is monotonic micreasing, and $(1,2)$ contains no integers $f x \in \mathbb{Z}$ such that $f(x)=s$.

